
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.
Clear["Global`*⋆"]

1 - 4 Euler method
Do 10 steps. Solve exactly. Compute the error.

1. y'[x] + 0.2 y[x] == 0 ; y[0] == 5, h == 0.2

I don’t try to work out the Euler method. I’m only interested in what NDSolve can do, and
its output compared with exact solutions, if they are available. (I should mention that prob-
lem 3 below succeeds in something I’ve been wanting to do.) About the text answers. All
the DSolve solutions match text answers in this section, as marked with green cells. The
text answers also contain information about numerical errors expected when the method in
focus is applied. However, since I don’t apply the text’s methods, I naturally skipped concen-
trating on those numerical errors.
Clear["global`*⋆"]

This is trying out the exact solution in order to compare it with the numerical solution. First
the exact solution.
s1 = DSolve[{y'[x] + 0.2 y[x] ⩵ 0, y[0] ⩵ 5}, y, {x, 0, 30}]

y → Function{x}, 5. ⅇ-−0.2 x

And a table and plot showing exact function values.
jq = Table[y[x] /∕. s1, {x, 0, 5, 0.5}];
p1 = Plot5.` ⅇ-−0.2` x, {x, 0, 5}, PlotStyle → {Red, Thickness[0.008]};

Then an interpolating function.
s2 = NDSolve[{y'[x] + 0.2 y[x] ⩵ 0, y[0] ⩵ 5}, y, {x, 0, 5}]

y → InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



And a table showing interpolated values.
jr = Table[y[x] /∕. s2, {x, 0, 5, 0.5}];

Then a two-column table showing the difference between exact and interpolated. It looks
like the two tables agree to S7.

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, 0, 5, 0.5}]]

{{5.00000000}, {5.00000000}}
{{4.52418710}, {4.52418720}}
{{4.09365380}, {4.09365350}}
{{3.70409110}, {3.70409110}}
{{3.35160020}, {3.35160010}}
{{3.03265330}, {3.03265330}}
{{2.74405820}, {2.74405810}}
{{2.48292650}, {2.48292650}}
{{2.24664480}, {2.24664480}}
{{2.03284830}, {2.03284830}}
{{1.83939720}, {1.83939720}}

And finally a look at the plot of the two functions.
p2 = Plot[Evaluate[y[x] /∕. s2],

{x, 0, 5}, PlotStyle → {White, Thickness[0.004]}];

The two solutions track pretty well. Exact solution is red.
Show[p1, p2]

1 2 3 4 5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

3. y'[x] ⩵ (y[x] -− x)2 ; y[0] ⩵ 0, h ⩵ 0.1

Clear["global`*⋆"]

Here I will do something a little different. First the exact solution, which I find still works
for this problem.

s1 = DSolvey'[x] ⩵ (y[x] -− x)2 , y[0] ⩵ 0, y[x], x

y[x] →
1 -− ⅇ2 x + x + ⅇ2 x x

1 + ⅇ2 x


2 21.1 Methods for First-Order ODEs 901.nb

SimplifyExpToTrig
1 -− ⅇ2 x + x + ⅇ2 x x

1 + ⅇ2 x


x -− Tanh[x]

And a plot of the exact solution, for purple background trace.

p1 = Plot
1 -− ⅇ2 x + x + ⅇ2 x x

1 + ⅇ2 x
, {x, 0, 5},

PlotStyle → {RGBColor[0.7, 0.3, 0.7], Thickness[0.008]};

Then the interpolated solution using NDSolve.

s2 = NDSolvey'[x] ⩵ (y[x] -− x)2 , y[0] ⩵ 0, y, {x, 0, 5}

y → InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



Then a table of values derived from the interpolated solution.
jr = Table[y[x] /∕. s2, {x, 0, 5, 0.005}];
jrf = Flatten[jr];
lx = Range[0, 5, 0.005];
thr = Thread[{lx, jrf}];
p3 = ListLinePlot[thr, PlotStyle → {White, Thickness[0.004]}];

And the plot of the exact solution overlaid by the plot of points from the interpolating
function of NDSolve.
Show[p1, p3]

1 2 3 4 5

1

2

3

4

But what if I want an actual equation to represent the numerical solution? With a little
experimentation I find the interval for 26 points, which is not too demanding of space or
cpu.

21.1 Methods for First-Order ODEs 901.nb 3

jrs = Table[y[x] /∕. s2, {x, 0, 5, 0.2}]
jrfs = Flatten[jrs];

{{0.}, {0.00262467}, {0.020051}, {0.0629505}, {0.135963},
{0.238406}, {0.366345}, {0.514648}, {0.678331}, {0.853194},
{1.03597}, {1.22426}, {1.41633}, {1.61097}, {1.80737},
{2.00495}, {2.20332}, {2.40223}, {2.60149}, {2.801},
{3.00067}, {3.20045}, {3.4003}, {3.6002}, {3.80014}, {4.00009}}

And providing for my 26 domain points.
lxs = Range[0, 5, 0.2];
thrs = Thread[{lxs, jrfs}]

{{0., 0.}, {0.2, 0.00262467}, {0.4, 0.020051}, {0.6, 0.0629505},
{0.8, 0.135963}, {1., 0.238406}, {1.2, 0.366345},
{1.4, 0.514648}, {1.6, 0.678331}, {1.8, 0.853194},
{2., 1.03597}, {2.2, 1.22426}, {2.4, 1.41633}, {2.6, 1.61097},
{2.8, 1.80737}, {3., 2.00495}, {3.2, 2.20332}, {3.4, 2.40223},
{3.6, 2.60149}, {3.8, 2.801}, {4., 3.00067}, {4.2, 3.20045},
{4.4, 3.4003}, {4.6, 3.6002}, {4.8, 3.80014}, {5., 4.00009}}

The idea being that I don’t want to plot points this time, or an interpolated function, I want
a real equation. I can use the set of points to call for an interpolating polynomial.
ipt = Simplify[InterpolatingPolynomial[thrs, x]]

0. + 0.0261475 x -− 0.478785 x2 + 4.19826 x3 -− 18.5659 x4 + 60.0462 x5 -−
141.127 x6 + 250.286 x7 -− 345.692 x8 + 380.094 x9 -− 337.866 x10 + 245.503 x11 -−
146.97 x12 + 72.8641 x13 -− 30.001 x14 + 10.2647 x15 -− 2.91337 x16 + 0.682995 x17 -−
0.131291 x18 + 0.0204636 x19 -− 0.00254374 x20 + 0.000246076 x21 -−
0.0000178439 x22 + 9.12057 × 10-−7 x23 -− 2.92899 × 10-−8 x24 + 4.44369 × 10-−10 x25

And with one copy and paste, my Pinnochio IP becomes a real equation.
pt[x_] = 0.` + 0.02614749772157321` x -− 0.47878452095496377` x2 +

4.198262542436343` x3 -− 18.565885975456638` x4 + 60.04624852508333` x5 -−
141.12670386028825` x6 + 250.28565670824995` x7 -− 345.6917160584147` x8 +
380.09424848385635` x9 -− 337.86585361013624` x10 +
245.50275327522917` x11 -− 146.9702428483498` x12 + 72.86407583833704` x13 -−
30.001012857996283` x14 + 10.264725913159012` x15 -−
2.9133662891118424` x16 + 0.6829951452560038` x17 -−
0.13129100464415203` x18 + 0.020463577227472583` x19 -−
0.0025437384096592065` x20 + 0.0002460759857445973` x21 -−
0.00001784389593520076` x22 + 9.120572579204695`*⋆^-−7 x23 -−
2.928991207288055`*⋆^-−8 x24 + 4.4436905900150525`*⋆^-−10 x25

0. + 0.0261475 x -− 0.478785 x2 + 4.19826 x3 -− 18.5659 x4 + 60.0462 x5 -−
141.127 x6 + 250.286 x7 -− 345.692 x8 + 380.094 x9 -− 337.866 x10 + 245.503 x11 -−
146.97 x12 + 72.8641 x13 -− 30.001 x14 + 10.2647 x15 -− 2.91337 x16 + 0.682995 x17 -−
0.131291 x18 + 0.0204636 x19 -− 0.00254374 x20 + 0.000246076 x21 -−
0.0000178439 x22 + 9.12057 × 10-−7 x23 -− 2.92899 × 10-−8 x24 + 4.44369 × 10-−10 x25

4 21.1 Methods for First-Order ODEs 901.nb

p4 = Plot[pt[x], {x, 0, 5}, PlotStyle → {White, Thickness[0.004]}];

Now to see how the polynomial equation compares to the exact formula.
Show[p1, p4]

1 2 3 4 5

1

2

3

4

The table below shows 5S minimum from a poly of order 25. Since the underlying functions
for problems 1 and 3 are similar, it looks like I may have cost myself 1 or 2 significant
figures of accuracy by making an equation out of interpolated points. Using the enhance-
ment options appearing in problem 9 and following, I could probably regain these lost
decimals, and maybe more.
TableForm[Table[NumberForm[{y[x] /∕. s1, pt[x]}, {8, 8}], {x, 0, 5, 0.5}]]
{{0.00000000}, 0.00000000}
{{0.03788284}, 0.03788592}
{{0.23840584}, 0.23840586}
{{0.59485175}, 0.59485169}
{{1.03597240}, 1.03597240}
{{1.51338570}, 1.51338570}
{{2.00494520}, 2.00494520}
{{2.50182210}, 2.50182230}
{{3.00067070}, 3.00067090}
{{3.50024680}, 3.50023560}
{{4.00009080}, 4.00005340}

5 - 10 Improved Euler method
Do 10 steps. Solve exactly. Compute the error.

5. y'[x] == y; y[0] == 1, h == 0.1

Clear["Global`*⋆"]

Good luck to the improved Euler method, whatever it is. I am sticking with NDSolve.
Though first to appear, as usual, is the exact equation with DSolve.

21.1 Methods for First-Order ODEs 901.nb 5

s1 = DSolve[{y'[x] ⩵ y[x], y[0] ⩵ 1}, y[x], x]

{{y[x] → ⅇx}}

And a plot of the exact solution, for brown background trace. (Plot retracted.)
p1 = Plot[ⅇx, {x, 0, 5}, PlotStyle → {Brown, Thickness[0.008]}];

Then the interpolated solution using NDSolve.
s2 = NDSolve[{y'[x] ⩵ y[x], y[0] ⩵ 1}, y, {x, 0, 5}]

y → InterpolatingFunction Domain: {{0., 5.}}
Output: scalar



I realize that for what I am doing in this problem the following table of sample points is not
necessary. Still, I prefer to do it that way for now.
jr = Table[y[x] /∕. s2, {x, 0, 5, 0.005}];
jrf = Flatten[jr];
lx = Range[0, 5, 0.005];
thr = Thread[{lx, jrf}];
p3 = ListLinePlot[thr, PlotStyle → {White, Thickness[0.004]}];

And the plot of the exact solution overlaid by the plot of points from the interpolating
function of NDSolve.
Show[p1, p3]

1 2 3 4 5

50

100

150

Now, a table comparison of output. Note that the points from both compared functions are
being cooked up on the fly. I think there is agreement to 6S.

6 21.1 Methods for First-Order ODEs 901.nb

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, 0, 5, 0.5}]]

{{1.00000000}, {1.00000000}}
{{1.64872130}, {1.64872120}}
{{2.71828180}, {2.71828160}}
{{4.48168910}, {4.48168570}}
{{7.38905610}, {7.38905210}}
{{12.18249400}, {12.18249500}}
{{20.08553700}, {20.08552100}}
{{33.11545200}, {33.11540600}}
{{54.59815000}, {54.59810600}}
{{90.01713100}, {90.01713800}}
{{148.41316000}, {148.41317000}}

7. y'[x] -− x y[x]2 ⩵ 0 ; y[0] ⩵ 1, h ⩵ 0.1

Here’s another one.
Clear["Global`*⋆"]

s1 = DSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1, y[x], x

y[x] → -−
2

-−2 + x2


The text answer is in a slightly different format, so I had better check the following.

PossibleZeroQ -−
2

-−2 + x2
-−

1

1 -− x2

2



True

Luckily I can still acquire an exact solution from DSolve. And a plot of the exact solution,
for green background trace.

p1 = Plot-−
2

-−2 + x2
, {x, 0, 1.2},

PlotStyle → {RGBColor[0.2, 0.8, 0.2], Thickness[0.008]};

Then the interpolated solution using NDSolve.

s2 = NDSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1, y, {x, 0, 1.2}

y → InterpolatingFunction Domain: {{0., 1.2}}
Output: scalar



I’m still going with the list of sample points.

21.1 Methods for First-Order ODEs 901.nb 7

jr = Table[y[x] /∕. s2, {x, 0, 1.2, 0.005}];
jrf = Flatten[jr];
lx = Range[0, 1.2, 0.005];
thr = Thread[{lx, jrf}];
p3 = ListLinePlot[thr, PlotStyle → {White, Thickness[0.004]}];

Until I restricted the domain to avoid asymptotes, I got a lot of warning messages. I’ll try
plotting the exact solution overlaid by the plot of points from the interpolating function of
NDSolve.
Show[p1, p3]

0.2 0.4 0.6 0.8 1.0 1.2

1.0

1.5

2.0

2.5

3.0

3.5

In comparing the functions’s values in the following table, I see that the accuracy falls off
from 7S at the top of the table to only 5S at the bottom
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, 0, 1.2, 0.1}]]

{{1.00000000}, {1.00000000}}
{{1.00502510}, {1.00502520}}
{{1.02040820}, {1.02040830}}
{{1.04712040}, {1.04712050}}
{{1.08695650}, {1.08695670}}
{{1.14285710}, {1.14285730}}
{{1.21951220}, {1.21951240}}
{{1.32450330}, {1.32450340}}
{{1.47058820}, {1.47058870}}
{{1.68067230}, {1.68067290}}
{{2.00000000}, {2.00000110}}
{{2.53164560}, {2.53164710}}
{{3.57142860}, {3.57143280}}

9. Do problem 7 using Euler’s method with h = 0.1 and compare the accuracy.

Since the problem instructions don’t relate well to my side-stepping path through the sec-
tion, I will substitute an experiment in tightening agreement between exact and interpo-
lated results, for the previous problem.

8 21.1 Methods for First-Order ODEs 901.nb

s3 = NDSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1, y, {x, 0, 1.2},

AccuracyGoal -−> 20, PrecisionGoal -−> 20, WorkingPrecision -−> 35

y → InterpolatingFunction Domain: {{0, 1.1999999999999999555910790149937384}}
Output: scalar



TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s3}, {10, 10}], {x, 0, 1.2, 0.1}]]

{{1.0000000000}, {1.0000000000}}
{{1.0050251260}, {1.0050251260}}
{{1.0204081630}, {1.0204081630}}
{{1.0471204190}, {1.0471204190}}
{{1.0869565220}, {1.0869565220}}
{{1.1428571430}, {1.1428571430}}
{{1.2195121950}, {1.2195121950}}
{{1.3245033110}, {1.3245033110}}
{{1.4705882350}, {1.4705882350}}
{{1.6806722690}, {1.6806722690}}
{{2.0000000000}, {2.0000000000}}
{{2.5316455700}, {2.5316455700}}
{{3.5714285710}, {3.5714285710}}

The above table is sort of amazing, presenting as it does, 11S with no noticeable increase in
execution time.

11 - 17 Classical Runge-Kutta method of fourth order
Do 10 steps. Compare as indicated.

11. y'[x] -− x y[x]2 ⩵ 0 ; y[0] ⩵ 1,
h ⩵ 0.1. Compare with problem 7. Apply the error estimate (10) to y10.

Mention of Runga-Kutta must be acknowledged. Seems like I worked with this in the old
days, and have to give it a spin at least.
Clear["Global`*⋆"]

DSolve is still working, a nice convenience. The green cell below is equivalent to the text
answer, see problem 7 for reconciliation.

s1 = DSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1, y[x], x

y[x] → -−
2

-−2 + x2


The tan background plot is the exact one. I have to keep the domain small for this one too,
because of pesky asymptotes.

21.1 Methods for First-Order ODEs 901.nb 9

p1 = Plot-−
2

-−2 + x2
, {x, 0, 1.2},

PlotStyle → {RGBColor[0.85, 0.7, 0.2], Thickness[0.008]};

The interpolating function from NDSolve comes next. Here I tried to do max steps → 10,
but that only took me out to x = 0.19, so I increased them.

s2 = NDSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1, y,

{x, 0, 1.2}, Method -−> "ExplicitRungeKutta", MaxSteps → 20

y → InterpolatingFunction Domain: {{0., 1.2}}
Output: scalar



And then the set of points for overlaying.
jr = Table[y[x] /∕. s2, {x, 0, 1.2, 0.005}];
jrf = Flatten[jr];
lx = Range[0, 1.2, 0.005];
thr = Thread[{lx, jrf}];
p3 = ListLinePlot[thr, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p3]

0.2 0.4 0.6 0.8 1.0 1.2

1.0

1.5

2.0

2.5

3.0

3.5

With the restricted number of steps, it looks like I get 4S minimum.

10 21.1 Methods for First-Order ODEs 901.nb

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, 0, 1.2, 0.1}]]

{{1.00000000}, {1.00000000}}
{{1.00502510}, {1.00502500}}
{{1.02040820}, {1.02040810}}
{{1.04712040}, {1.04712040}}
{{1.08695650}, {1.08695410}}
{{1.14285710}, {1.14284640}}
{{1.21951220}, {1.21948600}}
{{1.32450330}, {1.32445870}}
{{1.47058820}, {1.47054440}}
{{1.68067230}, {1.68067230}}
{{2.00000000}, {1.99984180}}
{{2.53164560}, {2.53154950}}
{{3.57142860}, {3.57142860}}

Below I find that increasing the MaxSteps does not help the accuracy.

s3 = NDSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1, y,

{x, 0, 1.2}, Method -−> "ExplicitRungeKutta", MaxSteps → 2000

y → InterpolatingFunction Domain: {{0., 1.2}}
Output: scalar



TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s3}, {8, 8}], {x, 0, 1.2, 0.1}]]

{{1.00000000}, {1.00000000}}
{{1.00502510}, {1.00502500}}
{{1.02040820}, {1.02040810}}
{{1.04712040}, {1.04712040}}
{{1.08695650}, {1.08695410}}
{{1.14285710}, {1.14284640}}
{{1.21951220}, {1.21948600}}
{{1.32450330}, {1.32445870}}
{{1.47058820}, {1.47054440}}
{{1.68067230}, {1.68067230}}
{{2.00000000}, {1.99984180}}
{{2.53164560}, {2.53154950}}
{{3.57142860}, {3.57142860}}

But tuning up the Goals and WorkingPrecision works well.

s4 = NDSolvey'[x] -− x y[x]2 ⩵ 0 , y[0] ⩵ 1,
y, {x, 0, 1.2}, Method -−> "ExplicitRungeKutta",
AccuracyGoal -−> 20, PrecisionGoal -−> 20, WorkingPrecision -−> 35

y → InterpolatingFunction Domain: {{0, 1.1999999999999999555910790149937384}}
Output: scalar



21.1 Methods for First-Order ODEs 901.nb 11

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s4}, {8, 8}], {x, 0, 1.2, 0.1}]]

{{1.00000000}, {1.00000000}}
{{1.00502510}, {1.00502510}}
{{1.02040820}, {1.02040820}}
{{1.04712040}, {1.04712040}}
{{1.08695650}, {1.08695650}}
{{1.14285710}, {1.14285710}}
{{1.21951220}, {1.21951220}}
{{1.32450330}, {1.32450330}}
{{1.47058820}, {1.47058820}}
{{1.68067230}, {1.68067230}}
{{2.00000000}, {2.00000000}}
{{2.53164560}, {2.53164560}}
{{3.57142860}, {3.57142860}}

13. y'[x] ⩵ 1 + y[x]2; y[0] ⩵ 0, h ⩵ 0.1

Clear["Global`*⋆"]

I think Runga-Kutta is good if I have to work with paper and pencil or generic software, but
with Mathematica it’s sort of irrelevant. With the present problem I see that DSolve is
giving me caveats, but it’s still putting out an answer.

s1 = DSolvey'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, y[x], x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. &

{{y[x] → Tan[x]}}

The background plot is the exact one, a teal-ish hue. Here there are more asymptotes to
dodge.
p1 = Plot[Tan[x], {x, 0, 1.2},

PlotStyle → {RGBColor[0.2, 0.5, 0.7], Thickness[0.008]}];

Next comes the NDSolve interpolating function. I’m dropping reference to Runga-Kutta in
the formulation for NDSolve, but putting in the accuracy enhancers.

s2 = NDSolvey'[x] ⩵ 1 + y[x]2, y[0] ⩵ 0, y, {x, 0, 1.2},

AccuracyGoal -−> 20, PrecisionGoal -−> 20, WorkingPrecision -−> 35

y → InterpolatingFunction Domain: {{0, 1.1999999999999999555910790149937384}}
Output: scalar



Next the overlay points are provided.

12 21.1 Methods for First-Order ODEs 901.nb

jr = Table[y[x] /∕. s2, {x, 0, 1.2, 0.005}];
jrf = Flatten[jr];
lx = Range[0, 1.2, 0.005];
thr = Thread[{lx, jrf}];
p3 = ListLinePlot[thr, PlotStyle → {White, Thickness[0.004]}];

Just before the overlay plot.
Show[p1, p3]

0.2 0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

2.5

And the satisfying table.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, 0, 1.2, 0.1}]]

{{0.00000000}, {0.00000000}}
{{0.10033467}, {0.10033467}}
{{0.20271004}, {0.20271004}}
{{0.30933625}, {0.30933625}}
{{0.42279322}, {0.42279322}}
{{0.54630249}, {0.54630249}}
{{0.68413681}, {0.68413681}}
{{0.84228838}, {0.84228838}}
{{1.02963860}, {1.02963860}}
{{1.26015820}, {1.26015820}}
{{1.55740770}, {1.55740770}}
{{1.96475970}, {1.96475970}}
{{2.57215160}, {2.57215160}}

15. y'[x] + y[x] Tan[x] == Sin[2 x] ; y[0] == 1, h == 0.1

Clear["Global`*⋆"]

Looks like there are two trig factors in this one.
s1 = DSolve[{y'[x] + y[x] Tan[x] ⩵ Sin[2 x], y[0] ⩵ 1}, y[x], x]

y[x] → 3 Cos[x] -− 2 Cos[x]2

The background plot is the exact one, orange hue. With this one I can extend the plot
domain a bit.

21.1 Methods for First-Order ODEs 901.nb 13

The background plot is the exact one, orange hue. With this one I can extend the plot
domain a bit.

p1 = Plot3 Cos[x] -− 2 Cos[x]2,

{x, 0, 5}, PlotStyle → {Orange, Thickness[0.008]};

Now for the NDSolve interpolating function. By now the accuracy enhancers are routine
additions. In this particular problem I notice that there must be some kind of obstruction
which NDSolve in encountering, because s2 is complaining if I try to raise the x limitation.
s2 = NDSolve[{y'[x] + y[x] Tan[x] ⩵ Sin[2 x], y[0] ⩵ 1}, y, {x, 0, 1.56},

AccuracyGoal -−> 20, PrecisionGoal -−> 20, WorkingPrecision -−> 35]

y → InterpolatingFunction Domain: {{0, 1.5600000000000000532907051820075139}}
Output: scalar



Next come the overlay points. But I find the overlay points are restricted to the smaller x-
interval.
jr = Table[y[x] /∕. s2, {x, 0, 1.56, 0.005}];
jrf = Flatten[jr];
lx = Range[0, 1.56, 0.005];
thr = Thread[{lx, jrf}];
p3 = ListLinePlot[thr, PlotStyle → {White, Thickness[0.004]}];

So this time the overlay plot looks quite undermined because of the limited x-interval.
Show[p1, p3]

1 2 3 4 5

-−5

-−4

-−3

-−2

-−1

1

The interpolating function of NDSolve can’t go through the x-axis for some reason. I don’t
understand why there should be a problem.

FindRoot3 Cos[x] -− 2 Cos[x]2, {x, 1.5}

{x → 1.5708}

1.5707963267948966`

This seems a little odd. The error messages give me a hint that a stiff system might be pre-
sent, so I try specifying the Method. “Automatic” does not work, but “BDF” does. I find that
I have to compromise on the accuracy enhancers to make it work.

14 21.1 Methods for First-Order ODEs 901.nb

This seems a little odd. The error messages give me a hint that a stiff system might be pre-
sent, so I try specifying the Method. “Automatic” does not work, but “BDF” does. I find that
I have to compromise on the accuracy enhancers to make it work.
s3 = NDSolve[{y'[x] + y[x] Tan[x] ⩵ Sin[2 x], y[0] ⩵ 1},

y, {x, 0, 5}, Method → "BDF", AccuracyGoal → 11,
PrecisionGoal → 11, WorkingPrecision → 20]

y → InterpolatingFunction Domain: {{0, 5.0000000000000000000}}
Output: scalar



I think it is time to drop the overlay of a list of sample points, it really isn’t necessary to do
it that way. It was necessary in problem 3, in order to get an interpolating polynomial. But
the NDSolve interpolating function can overlay on its own.
p4 = Plot[y[x] /∕. s3, {x, 0, 5}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p4]

1 2 3 4 5

-−5

-−4

-−3

-−2

-−1

1

Despite the need to compromise a bit on Goals and WP, the table seems to still have 9S.
TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s3}, {8, 8}], {x, 0, 5, 0.4}]]

{{1.00000000}, {1.00000000}}
{{1.06647630}, {1.06647630}}
{{1.11931970}, {1.11931970}}
{{0.82446698}, {0.82446698}}
{{-−0.08930379}, {-−0.08930379}}
{{-−1.59479690}, {-−1.59479690}}
{{-−3.29968010}, {-−3.29968010}}
{{-−4.60223290}, {-−4.60223290}}
{{-−4.98806920}, {-−4.98806920}}
{{-−4.29862660}, {-−4.29862660}}
{{-−2.81543080}, {-−2.81543080}}
{{-−1.11090560}, {-−1.11090560}}
{{0.24718481}, {0.24718481}}

17. y'[x] ⩵ 4 x3 y2 ; y[0] ⩵ 0.5, h ⩵ 0.1

Clear["Global`*⋆"]

Back to looking at a pure poly. Note: the text answers identifies the green cell below as y '
instead of y, but I assume it is a typo on the text’s part.

21.1 Methods for First-Order ODEs 901.nb 15

Back to looking at a pure poly. Note: the text answers identifies the green cell below as y '
instead of y, but I assume it is a typo on the text’s part.

s1 = DSolvey'[x] ⩵ 4 x3 y[x]2 , y[0] ⩵ 0.5, y[x], x

y[x] → -−
1.

-−2. + x4


The plot shows the solution function to be as asymptote-prone as a tangent.
p1 = Plot[y[x] /∕. s1, {x, -−1, 1},

PlotStyle → {RGBColor[1, 0.6, 0.6], Thickness[0.008]}];

From the behavior of NDSolve, this problem function is not stiff. Mathematica gives me the
message that the requested enhancement group can’t be realized, but I leave it in anyway.

s2 = NDSolvey'[x] ⩵ 4 x3 y[x]2 , y[0] ⩵ 0.5, y, {x, -−1, 1},

AccuracyGoal → ∞, PrecisionGoal → 10, WorkingPrecision → 15

NDSolve::precw:
The precisionof thedifferentialequation(y′[x] ⩵ 4 x3 y[x]2, y[0] ⩵ 0.5, {}, {}, {}, {}) is lessthanWorkingPrecision(15.)̀. &

y → InterpolatingFunction Domain: {{-−1.00000000000000, 1.00000000000000}}
Output: scalar



p2 = Plot[y[x] /∕. s2, {x, -−1, 1}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−1.0 -−0.5 0.5 1.0

0.5

0.6

0.7

0.8

0.9

1.0

I’ve set the enhancers according to some pointers I picked up at SEMma, https://mathematica.s-
tackexchange.com/questions/88042/precision-and-accuracy-in-ndsolve-and-nminimize, but it looks like
6S is the best I’m going to do with this one.

16 21.1 Methods for First-Order ODEs 901.nb

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1, 1, 0.2}]]

{{1.00000000}, {1.00000000}}
{{0.62877264}, {0.62877262}}
{{0.53464500}, {0.53464499}}
{{0.50648298}, {0.50648298}}
{{0.50040032}, {0.50040032}}
{{0.50000000}, {0.50000000}}
{{0.50040032}, {0.50040032}}
{{0.50648298}, {0.50648298}}
{{0.53464500}, {0.53464499}}
{{0.62877264}, {0.62877262}}
{{1.00000000}, {1.00000000}}

19. CAS experiment. Euler-Cauchy vs. RK.
Consider the initial value problem

(17) y'[x] ⩵ y[x] -− 0.01 x22 Sinx2 + 0.02 x ;

y[0] ⩵ 0.4 solution : y ⩵ 1/∕[2.5 -− S[x]] + 0.01 x2,

where S[x] is the Fresnel integral (38) in appendix 3.1. (a) Solve (17) by Euler,
improved Euler, and RKmethods for 0 ≤ x ≤ 5with step h =
0.2. Compare the errors for x = 1, 3,

5 and comment. (b)Graph solution curves of the ODE in (17) for various positive
and negative initial values. (c)Do a similar experiment as in (a) for an initial
value problem that has amonotone increasing ormonotone decreasing
solution. Compare the behavior of the error with that in (a). Comment.

Clear["Global`*⋆"]

This one does seem to have a more complicated solution than previous problems, I’ll give it
that. Otherwise, I treat it as just another problem, in spite of its wordy introduction. I found
that by adding the Simplify command in the s1 equation below, I could get rid of some
phantom imaginary elements which would have crept back in later.

s1 = Simplify

DSolvey'[x] ⩵ y[x] -− 0.01 x22 Sinx2 + 0.02 x , y[0] ⩵ 0.4, y[x], x

y[x] → 0.797885 + 0.0199471 x2 -− 0.01 x2 FresnelS
2

π
x 

1.99471 -− 1. FresnelS
2

π
x 

21.1 Methods for First-Order ODEs 901.nb 17

k[x_] = 0.7978845608028654` +

0.019947114020071637` x2 -− 0.01` x2 FresnelS
2

π
x 

1.9947114020071637` -− 1.` FresnelS
2

π
x ;

The following is as close as I’m going to get to checking the solution.
k[0]

0.4

The background plot will have the exact solution in light blue.
p1 = Plot[y[x] /∕. s1, {x, -−1, 1},

PlotStyle → {RGBColor[0.6, 0.6, 1], Thickness[0.008]}];

NDSolve does not balk at solving the equation, though it does warn of a reduced precision
compared with the requested level.

s2 = NDSolvey'[x] ⩵ y[x] -− 0.01 x22 Sinx2 + 0.02 x , y[0] ⩵ 0.4, y,

{x, -−1, 1}, AccuracyGoal → ∞, PrecisionGoal → 10, WorkingPrecision → 15

NDSolve::precw: The precisionof thedifferentialequation
(y′[x] ⩵ 0.02x+Sinx2 (Times[52&]+y[51&])2, y[0] ⩵ 0.4, {}, {}, {}, {}) is lessthanWorkingPrecision(15.)̀. &

y → InterpolatingFunction Domain: {{-−1.00000000000000, 1.00000000000000}}
Output: scalar



p2 = Plot[y[x] /∕. s2, {x, -−1, 1}, PlotStyle → {White, Thickness[0.004]}];

Show[p1, p2]

-−1.0 -−0.5 0.5 1.0

0.38

0.40

0.42

0.44

0.46

In spite of Mathematica saying that the precision would be inadequate, it looks great to me.

18 21.1 Methods for First-Order ODEs 901.nb

TableForm[
Table[NumberForm[{y[x] /∕. s1, y[x] /∕. s2}, {8, 8}], {x, -−1, 1, 0.2}]]

{{0.36583791}, {0.36583791}}
{{0.38153063}, {0.38153063}}
{{0.39250285}, {0.39250285}}
{{0.39822168}, {0.39822168}}
{{0.39997384}, {0.39997384}}
{{0.40000000}, {0.40000000}}
{{0.40082707}, {0.40082707}}
{{0.40503637}, {0.40503637}}
{{0.41534905}, {0.41534905}}
{{0.43480094}, {0.43480094}}
{{0.46667695}, {0.46667695}}

21.1 Methods for First-Order ODEs 901.nb 19

